Improved targeting of JAK2 leads to increased therapeutic efficacy in myeloproliferative neoplasms.

نویسندگان

  • Neha Bhagwat
  • Priya Koppikar
  • Matthew Keller
  • Sachie Marubayashi
  • Kaitlyn Shank
  • Raajit Rampal
  • Jun Qi
  • Maria Kleppe
  • Hardik J Patel
  • Smit K Shah
  • Tony Taldone
  • James E Bradner
  • Gabriela Chiosis
  • Ross L Levine
چکیده

The discovery of JAK2/MPL mutations in patients with myeloproliferative neoplasms (MPN) led to clinical development of Janus kinase (JAK) inhibitors for treatment of MPN. These inhibitors improve constitutional symptoms and splenomegaly but do not significantly reduce mutant allele burden in patients. We recently showed that chronic exposure to JAK inhibitors results in inhibitor persistence via JAK2 transactivation and persistent JAK-signal transducer and activator of transcription signaling. We performed genetic and pharmacologic studies to determine whether improved JAK2 inhibition would show increased efficacy in MPN models and primary samples. Jak2 deletion in vivo led to profound reduction in disease burden not seen with JAK inhibitors, and deletion of Jak2 following chronic ruxolitinib therapy markedly reduced mutant allele burden. This demonstrates that JAK2 remains an essential target in MPN cells that survive in the setting of chronic JAK inhibition. Combination therapy with the heat shock protein 90 (HSP90) inhibitor PU-H71 and ruxolitinib reduced total and phospho-JAK2 and achieved more potent inhibition of downstream signaling than ruxolitinib monotherapy. Combination treatment improved blood counts, spleen weights, and reduced bone marrow fibrosis compared with ruxolitinib alone. These data suggest alternate approaches that increase JAK2 targeting, including combination JAK/HSP90 inhibitor therapy, are warranted in the clinical setting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myeloproliferative Neoplasms Associated with Mutation in JAK2V617F and Tyrosine Kinase Inhibitors as Therapeutic Strategy

MPNs including a heterogeneous group of clonal or oligoclonal hamtopathies characterized by proliferation and accumulation of mature myeloid cells. JAK2 tyrosine kinase mutation is the most common molecular lesion identified in 90% of cases. JAK2 is involved in EPO signaling pathway, and mutations in it lead to EPO-independent spontaneous phosphorylation. Most tyrosine kinase inhibitors (TKI) a...

متن کامل

ارزیابی جهش JAK2V617F در نئوپلاسم های  میلوپرولیفراتیو کلاسیک غیر CML به روش ARMS-PCR

Background and Aim : Myeloproliferative neoplasms are clonal and heterogeneous disorders of hematopoietic stem cells lead to increase of one or more cell lines in the blood. Recently, the acquired mutation JAK2 V617F has been described in the majority of patients with myeloproliferative neoplasms (MPNs).This mutation is characterized by a G to T transverse at nucleotide 1849 in exon 12 of the J...

متن کامل

HSP90 is a therapeutic target in JAK2-dependent myeloproliferative neoplasms in mice and humans.

JAK2 kinase inhibitors were developed for the treatment of myeloproliferative neoplasms (MPNs), following the discovery of activating JAK2 mutations in the majority of patients with MPN. However, to date JAK2 inhibitor treatment has shown limited efficacy and apparent toxicities in clinical trials. We report here that an HSP90 inhibitor, PU-H71, demonstrated efficacy in cell line and mouse mode...

متن کامل

Hyper eosinophilia associated with myeloid and lymphoid neoplasms

Eosinophilia in the absence of allergies, asthma, drug reactions, parasitic infections and connective tissue diseases can be eosinophilic clonal disorders, lymphoma or myeloproliferative disorders. Hypereosinophilia with the persistence of eosinophils ≥1500 /mm³ in blood or more than 20% of eosinophils in the bone marrow may be observed in many reactive or clonal disorders, the result of which ...

متن کامل

Co-targeting the PI3K/mTOR and JAK2 signalling pathways produces synergistic activity against myeloproliferative neoplasms

Aberrant JAK2 signalling plays a central role in myeloproliferative neoplasms (MPN). JAK2 inhibitors have proven to be clinically efficacious, however, they are not mutation-specific and competent enough to suppress neoplastic clonal haematopoiesis. We hypothesized that, by simultaneously targeting multiple activated signalling pathways, MPN could be more effectively treated. To this end we inv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Blood

دوره 123 13  شماره 

صفحات  -

تاریخ انتشار 2014